These functions estimate the parameters of the (zero-inflated) negative binomial distribution by applying the maximum likelihood method to the labelled observations in class 0.

estim.nbinom(y, z, gamma)

estim.zinb(y, z, gamma)

Arguments

y

observations: numeric vector of length n

z

class labels: integer vector of length n, with entries 0, 1 and NA

gamma

offset: numeric vector of length n, or NULL

Value

These functions return a list of numerics.

See also

These are internal functions. The user functions are mixtura and scrutor.

Examples

# data simulation n <- 100 y <- stats::rnbinom(n=n,mu=5,size=1/0.05) y[sample(1:n,size=0.2*n)] <- 0 z <- rep(0,times=n) gamma <- rep(1,times=n) # parameter estimation estim.nbinom(y,z,gamma)
#> $mu #> [1] 4.11 #> #> $phi #> [1] 0.5959951 #>
estim.zinb(y,z,gamma)
#> $mu #> [1] 5.014082 #> #> $phi #> [1] 0.1517328 #> #> $pi #> [1] 0.1803093 #>