This page lists the main methods for class "palasso".
# S3 method for class 'palasso'
predict(object, newdata, model = "paired", s = "lambda.min", max = NULL, ...)
# S3 method for class 'palasso'
coef(object, model = "paired", s = "lambda.min", max = NULL, ...)
# S3 method for class 'palasso'
weights(object, model = "paired", max = NULL, ...)
# S3 method for class 'palasso'
fitted(object, model = "paired", s = "lambda.min", max = NULL, ...)
# S3 method for class 'palasso'
residuals(object, model = "paired", s = "lambda.min", max = NULL, ...)
# S3 method for class 'palasso'
deviance(object, model = "paired", max = NULL, ...)
# S3 method for class 'palasso'
logLik(object, model = "paired", max = NULL, ...)
# S3 method for class 'palasso'
summary(object, model = "paired", ...)
palasso object
covariates: list of matrices, each with \(n\) rows (samples) and \(p\) columns (variables)
character "paired"
,
or an entry of names(object)
penalty parameter:
character "lambda.min"
or "lambda.1se"
,
positive numeric,
or NULL
(entire sequence)
maximum number of non-zero coefficients,
positive integer,
or NULL
further arguments for
predict.cv.glmnet
,
coef.cv.glmnet
,
or deviance.glmnet
By default, the function predict
returns
the linear predictor (type="link"
).
Consider predicting the response (type="response"
).
Use palasso to fit the paired lasso.